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CS 188: Artificial Intelligence
Spring 2008

Bayes Nets

2/5/08, 2/7/08

Dan Klein – UC Berkeley

Bayes’ Nets

� A Bayes’ net is an efficient encoding of a 
probabilistic model of a domain

� Questions we can ask:

� Inference: given a fixed BN, what is P(X | e)?

� Representation: given a fixed BN, what kinds 
of distributions can it encode?

� Modeling: what BN is most appropriate for a 
given domain?

Example Bayes’ Net Bayes’ Net Semantics

� A Bayes’ net:

� A set of nodes, one per variable X

� A directed, acyclic graph

� A conditional distribution of each variable 

conditioned on its parents (the parameters θ)

� Semantics:

� A BN defines a joint probability distribution 

over its variables:

A
1

X

A
n

Building the (Entire) Joint

� We can take a Bayes’ net and build any entry 
from the full joint distribution it encodes

� Typically, there’s no reason to build ALL of it

� We build what we need on the fly

� To emphasize: every BN over a domain implicitly 
represents some joint distribution over that 
domain, but is specified by local probabilities

Example: Alarm Network
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Size of a Bayes’ Net

� How big is a joint distribution over N Boolean variables?

� How big is an N-node net if nodes have k parents?

� Both give you the power to calculate

� BNs: Huge space savings!

� Also easier to elicit local CPTs

� Also turns out to be faster to answer queries (next class)

Bayes’ Nets

� So far: how a Bayes’ net encodes a joint distribution

� Next: how to answer queries about that distribution
� Key idea: conditional independence

� Last class: assembled BNs using an intuitive notion of 
conditional independence as causality

� Today: formalize these ideas

� Main goal: answer queries about conditional independence and 
influence

� After that: how to answer numerical queries (inference)

Conditional Independence

� Reminder: independence

� X and Y are independent if

� X and Y are conditionally independent given Z

� (Conditional) independence is a property of a 
distribution

Example: Independence

� For this graph, you can fiddle with θ (the CPTs) all you 

want, but you won’t be able to represent any distribution 

in which the flips are dependent!
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Topology Limits Distributions

� Given some graph 

topology G, only certain 

joint distributions can 

be encoded

� The graph structure 

guarantees certain 

(conditional) 

independences

� (There might be more 

independence)

� Adding arcs increases 

the set of distributions, 

but has several costs
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Independence in a BN

� Important question about a BN:
� Are two nodes independent given certain evidence?

� If yes, can calculate using algebra (really tedious)

� If no, can prove with a counter example

� Example:

� Question: are X and Z independent?
� Answer: not necessarily, we’ve seen examples otherwise: 
low pressure causes rain which causes traffic.

� X can influence Z, Z can influence X (via Y)

� Addendum: they could be independent: how?

X Y Z
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Causal Chains

� This configuration is a “causal chain”

� Is X independent of Z given Y?

� Evidence along the chain “blocks” the influence

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

Common Cause

� Another basic configuration: two 
effects of the same cause
� Are X and Z independent?

� Are X and Z independent given Y?

� Observing the cause blocks 
influence between effects.

X

Y

Z

Yes!

Y: Project due

X: Newsgroup 

busy

Z: Lab full

Common Effect

� Last configuration: two causes of 

one effect (v-structures)

� Are X and Z independent?

� Yes: remember the ballgame and the rain 

causing traffic, no correlation?

� Still need to prove they must be (homework)

� Are X and Z independent given Y?

� No: remember that seeing traffic put the rain 

and the ballgame in competition?

� This is backwards from the other cases

� Observing the effect enables influence 

between effects.

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

The General Case

� Any complex example can be analyzed 

using these three canonical cases

� General question: in a given BN, are two 

variables independent (given evidence)?

� Solution: graph search!

Reachability

� Recipe: shade evidence nodes

� Attempt 1: if two nodes are 
connected by an undirected path 
not blocked by a shaded node, 
they are conditionally independent

� Almost works, but not quite
� Where does it break?

� Answer: the v-structure at T doesn’t 
count as a link in a path unless shaded

R

T

B

D

L

T’

Reachability (the Bayes’ Ball)

� Correct algorithm:
� Shade in evidence

� Start at source node

� Try to reach target by search

� States: pair of (node X, previous 
state S)

� Successor function:
� X unobserved:

� To any child

� To any parent if coming from a 
child

� X observed:
� From parent to parent

� If you can’t reach a node, it’s 
conditionally independent of the 
start node given evidence

S

X X

S

S

X X

S
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Example

Yes

Example

R

T

B

D

L

T’

Yes

Yes

Yes

Example

� Variables:

� R: Raining

� T: Traffic

� D: Roof drips

� S: I’m sad

� Questions:

T

S

D

R

Yes

Causality?

� When Bayes’ nets reflect the true causal patterns:
� Often simpler (nodes have fewer parents)

� Often easier to think about

� Often easier to elicit from experts

� BNs need not actually be causal
� Sometimes no causal net exists over the domain

� E.g. consider the variables Traffic and Drips

� End up with arrows that reflect correlation, not causation

� What do the arrows really mean?
� Topology may happen to encode causal structure

� Topology only guaranteed to encode conditional independencies

Example: Traffic

� Basic traffic net

� Let’s multiply out the joint
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Example: Reverse Traffic

� Reverse causality?
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Example: Coins

� Extra arcs don’t prevent representing 

independence, just allow non-independence
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Alternate BNs

Summary

� Bayes nets compactly encode joint distributions

� Guaranteed independencies of distributions can be 
deduced from BN graph structure

� A Bayes’ net may have other independencies that are 
not detectable until you inspect its specific distribution

� The Bayes’ ball algorithm (aka d-separation) tells us 
when an observation of one variable can change belief 
about another variable

Inference

� Inference: calculating some 
statistic from a joint probability 
distribution

� Examples:
� Posterior probability:

� Most likely explanation:

R

T

B

D

L

T’

Inference by Enumeration

� P(sun)?

� P(sun | winter)?

� P(sun | winter, warm)?

0.30sunwarmsummer

0.05rainwarmsummer

0.10suncoldsummer

0.05raincoldsummer

winter

winter

winter

winter

S

0.20raincold

0.15suncold

0.05rainwarm

0.10sunwarm

PRT

Reminder: Alarm Network
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Inference by Enumeration

� Given unlimited time, inference in BNs is easy

� Recipe:

� State the marginal probabilities you need

� Figure out ALL the atomic probabilities you need

� Calculate and combine them

� Example:

Example

Where did we 

use the BN 

structure?

We didn’t!

Example

� In this simple method, we only need the 

BN to synthesize the joint entries

Normalization Trick

Normalize

Inference by Enumeration

� General case:
� Evidence variables: 

� Query variables:

� Hidden variables:

� We want:

� First, select the entries consistent with the evidence

� Second, sum out H:

� Finally, normalize the remaining entries to conditionalize

� Obvious problems:
� Worst-case time complexity O(dn) 

� Space complexity O(dn) to store the joint distribution

All variables

Inference by Enumeration?
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Nesting Sums

� Atomic inference is extremely slow!

� Slightly clever way to save work:

� Move the sums as far right as possible

� Example: 

Variable Elimination: Idea

� Lots of redundant work in the computation tree

� We can save time if we cache all partial results

� This is the basic idea behind variable elimination

Sampling

� Basic idea:
� Draw N samples from a sampling distribution S

� Compute an approximate posterior probability

� Show this converges to the true probability P

� Outline:
� Sampling from an empty network

� Rejection sampling: reject samples disagreeing with evidence

� Likelihood weighting: use evidence to weight samples

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Prior Sampling

� This process generates samples with probability

…i.e. the BN’s joint probability

� Let the number of samples of an event be

� Then

� I.e., the sampling procedure is consistent

Example

� We’ll get a bunch of samples from the BN:

c, ¬s, r, w

c, s, r, w

¬c, s, r, ¬w

c, ¬s, r, w

¬c, s, ¬r, w

� If we want to know P(W)

� We have counts <w:4, ¬w:1>

� Normalize to get P(W) = <w:0.8, ¬w:0.2>

� This will get closer to the true distribution with more samples

� Can estimate anything else, too

� What about P(C| ¬r)?   P(C| ¬r, ¬w)?

Cloudy

Sprinkler Rain

WetGrass

C

S R

W
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Rejection Sampling

� Let’s say we want P(C)

� No point keeping all samples around

� Just tally counts of C outcomes

� Let’s say we want P(C| s)

� Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 

have S=s

� This is rejection sampling

� It is also consistent (correct in the 

limit)

c, ¬s, r, w

c, s, r, w

¬c, s, r, ¬w

c, ¬s, r, w

¬c, s, ¬r, w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

Likelihood Weighting

� Problem with rejection sampling:
� If evidence is unlikely, you reject a lot of samples

� You don’t exploit your evidence as you sample

� Consider P(B|a)

� Idea: fix evidence variables and sample the rest

� Problem: sample distribution not consistent!

� Solution: weight by probability of evidence given parents

Burglary Alarm

Burglary Alarm

Likelihood Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Likelihood Weighting

� Sampling distribution if z sampled and e fixed evidence

� Now, samples have weights

� Together, weighted sampling distribution is consistent

Cloudy

Rain

C

S R

W

Likelihood Weighting

� Note that likelihood weighting 

doesn’t solve all our problems

� Rare evidence is taken into account 

for downstream variables, but not 

upstream ones

� A better solution is Markov-chain 

Monte Carlo (MCMC), more 

advanced

� We’ll return to sampling for robot 

localization and tracking in dynamic 

BNs

Cloudy

Rain

C

S R

W


