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Bayes’ Nets

= A Bayes' net is an efficient encoding of a
probabilistic model of a domain

= Questions we can ask:
= Inference: given a fixed BN, what is P(X | €)?
= Representation: given a fixed BN, what kinds
of distributions can it encode?
= Modeling: what BN is most appropriate for a
given domain?

Example Bayes’ Net

Bayes’ Net Semantics

= A Bayes' net:
= A set of nodes, one per variable X @ e @
= A directed, acyclic graph
= A conditional distribution of each variable
conditioned on its parents (the parameters 0)

P(Xlay...an) 0 :%

= Semantics: P(X|A1...Ap)

= A BN defines a joint probability distribution
over its variables:

n
P(z1,32,...2n) = [] P(x;|parents(X;))
i=1

Building the (Entire) Joint

= We can take a Bayes’ net and build any entry
from the full joint distribution it encodes

n
P(z1,22,...on) = || P(a;|parents(X;))
i=1

= Typically, there’s no reason to build ALL of it
= We build what we need on the fly

= To emphasize: every BN over a domain implicitly
represents some joint distribution over that
domain, but is specified by local probabilities

Example: Alarm Network
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Size of a Bayes’ Net

= How big is a joint distribution over N Boolean variables?

= How big is an N-node net if nodes have k parents?

= Both give you the power to calculate P(X1, Xo,... Xn)

= BNs: Huge space savings!

= Also easier to elicit local CPTs

= Also turns out to be faster to answer queries (next class)

Bayes’ Nets

= So far: how a Bayes’ net encodes a joint distribution

= Next: how to answer queries about that distribution
= Key idea: conditional independence
= Last class: assembled BNs using an intuitive notion of
conditional independence as causality
Today: formalize these ideas

Main goal: answer queries about conditional independence and
influence

= After that: how to answer numerical queries (inference)

Conditional Independence

= Reminder: independence
= X and Y are independent if

v,y P(z,y) = P(x)P(y) ---=2 X1Y
= X'and Y are conditionally independent given Z
Va,y,z P(z,ylz) = P(z|z)P(y|lz)---> XL1Y|Z

= (Conditional) independence is a property of a
distribution

Example: Independence

= For this graph, you can fiddle with 6 (the CPTs) all you
want, but you won’t be able to represent any distribution
in which the flips are dependent!

OO

X1l Xo

P(X1) P(X>5)
h |os h o5
t |o5 t |os

All distributions

Topology Limits Distributions

= Given some graph ®

topology G, only certain
joint distributions can ® @
be encoded
= The graph structure

guarantees certain

(conditional)

independences
= (There might be more

independence)
= Adding arcs increases

the set of distributions,

but has several costs E?

Independence in a BN

= |Important question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can calculate using algebra (really tedious)
= If no, can prove with a counter example

= Example:

= Question: are X and Z independent?
= Answer: not necessarily, we've seen examples otherwise:
low pressure causes rain which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?




Causal Chains

= This configuration is a “causal chain”

OaORO

P(x,y,2) = P(z) P(ylx) P(zly)

= Is X independent of Z given Y?

X: Low pressure
Y: Rain
Z: Traffic

P(z,y,2) _ P(x)P(ylz)P(zly)

P(zlz,y) = =

P(z,y) P(z)P(y|z)

= P(zly)

Yes!

= Evidence along the chain “blocks” the influence

Common Cause

= Another basic configuration: two
effects of the same cause
= Are X and Z independent?

= Are X and Z independent given Y?
P(x,y,2) _ P(y)P(z|y) P(z]y) Y: Project due

P(z|z,y) = =
| Ple.) Py)P(ely) X Newsgroup
busy
=P :
(zly) Yes! Z: Lab full

= Observing the cause blocks
influence between effects.

Common Effect

= Last configuration: two causes of
one effect (v-structures)

= Are X and Z independent?
= Yes: remember the ballgame and the rain
causing traffic, no correlation?
= Still need to prove they must be (homework)
= Are X and Z independent given Y?
= No: remember that seeing traffic put the rain
and the ballgame in competition?
= This is backwards from the other cases

= Observing the effect enables influence
between effects.

X: Raining
Z: Ballgame
Y: Traffic

The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: graph search!

Reachability

= Recipe: shade evidence nodes G

= Attempt 1: if two nodes are

connected by an undirected path e e

not blocked by a shaded node,
they are conditionally independent

= Almost works, but not quite Q
= Where does it break?

= Answer: the v-structure at T doesn’t
count as a link in a path unless shaded

Reachability (the Bayes’ Ball)

= Correct algorithm:
Shade in evidence
Start at source node
Try to reach target by search
States: pair of (node X, previous
state S)

Successor function:
= Xunobserved:

= To any child
= To any parent if coming from a
child
= Xobserved:

= From parent to parent
If you can't reach a node, it's
conditionally independent of the
start node given evidence




Example

Example

aliens
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AULWI|R

late

report
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L1 B|T' Q @

LU B|T,R Yes

Example

Causality?

= Variables:
* R: Raining (r)
= T: Traffic
= D: Roof drips
= S: I'msad 0
= Questions: Q
TUD
T1UD|R Yes

TID|R,S

= When Bayes’ nets reflect the true causal patterns:
= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology only guaranteed to encode conditional independencies

Example: Traffic

Example: Reverse Traffic

= Basic traffic net
= Let’s multiply out the joint

P(R) P(T,R)
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= Reverse causality?

P(T) P(T, R)
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Example: Coins

= Extra arcs don’t prevent representing
independence, just allow non-independence

W ® OO

Alternate BNs

©
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Summary

= Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

= A Bayes’ net may have other independencies that are
not detectable until you inspect its specific distribution

= The Bayes’ ball algorithm (aka d-separation) tells us
when an observation of one variable can change belief
about another variable

Inference

= |nference: calculating some o
statistic from a joint probability
distribution

= Examples: e e

= Posterior probability:

P(Q|Ey =ey1,... By =ey) Q G

= Most likely explanation:

argmax, P(Q =q|E1 =e1...) a

Inference by Enumeration

Reminder: Alarm Network

P(B) P(E)

001 Earthquake )™ 0,

Burglary

= P(sun)?
S T R P
summer | warm | sun 0.30
summer | warm | rain 0.05
= P(sun | winter)? summer | cold | sun | 0.10

summer | cold rain 0.05

winter warm | sun 0.10

winter warm | rain 0.05

winter cold sun 0.15
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Inference by Enumeration

= Given unlimited time, inference in BNs is easy
= Recipe:

= State the marginal probabilities you need

= Figure out ALL the atomic probabilities you need

= Calculate and combine them

= Example: R @

P(blj,m) = 8 /@\
P(j,m)
g ®

Example

P@ljmy = L&5m) Je
P(j,m)
P(b,j,m) = P(b,e,a,j,m)+ @ @

P(b7€7a7j’m)+
P(b7e7a7j’m)+
P(b,e,a,j,m)

=ZP(b7e7a7j7m)
€,a

Where did we
use the BN
structure?

Example

= |n this simple method, we only need the
BN to synthesize the joint entries

P(b,j,m) =
P(b)P(e)P(alb,e) P(jla)P(mla)+
P(b)P(e)P(alb, e) P(jla) P(mla)+
P(b)P(e)P(alb, &) P(jla)P(mla)+
P(b)P(e)P(alb, €) P(jla)P(m|a)

Normalization Trick

P(Blj,m)=% ®
- S

P(b,j,m) ZZP(b,e,a,j,m) @ @

e,a

P(T),j,m) = ZP(B,e,a,j,m)
e,a

P(b, j,m) ) [ P
[P(E,j,m)} ot [ P(lj, mJ

Inference by Enumeration

= General case:
= Evidence variables: (E1-..Ej) = (e1...ex) X1,X5,...Xn
= Query variables: Yi...Ym )
= Hidden variables:  Hy...H, All variables

= Wewant: P(Y1...Ymler...e)

= First, select the entries consistent with the evidence
= Second, sum out H:
P(Y1...Ymer...ep)= 2. POY1...Ym,h1.. . hre1...e;)

hyohr

X1, X0, ... Xn
= Finally, normalize the remaining entries to conditionalize

= Obvious problems:
= Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution

Inference by Enumeration?




Nesting Sums

= Atomic inference is extremely slow! /C@
= Slightly clever way to save work: ;A:{

= Move the sums as far right as possible
= Example: @ @

P(b:j7m) =Zp(b,e,a,j,m)

e,a

=) _P()P(e)P(alb,e) P(jla)P(m|a)

e,a

= P(b) ) P(e) Y P(alb,e) P(jla)P(mla)

Variable Elimination: |dea

= Lots of redundant work in the computation tree
= We can save time if we cache all partial results

= This is the basic idea behind variable elimination

Sampling

= Basic idea:
= Draw N samples from a sampling distribution S

= Compute an approximate posterior probability
= Show this converges to the true probability P

= Outline:
= Sampling from an empty network
= Rejection sampling: reject samples disagreeing with evidence
= Likelihood weighting: use evidence to weight samples

Prior Sampling

c [ps|o) C |P(RIC)
Tl [0
F| 50 Fl 20

Prior Sampling

= This process generates samples with probability

n
SPS(‘TI .. .:):'n) = H P(xi\Parents(Xi)) = P((L’l .. .Jl'n)
i=1
...i.e. the BN’s joint probability

= Let the number of samples of an event be Npg(z1...xn)

= Then _lim P(z1,...,2n) = lim Npg(z1,...,2n)/N
N—oo N—oo

Sps(z1;---s%n)

P(zy...xn)

= |.e., the sampling procedure is consistent

S R[P(W|S.R)
T T| .99
T F| .90
BT .90
F F| .01
Example
= We'll get a bunch of samples from the BN:
C,—S, ILw
C, s, rw
—C, S, I, =W
C,—s, ILw
—C, s, -, W

= |If we want to know P(W)
= We have counts <w:4, —w:1>
= Normalize to get P(W) = <w:0.8, —w:0.2>
= This will get closer to the true distribution with more samples
= Can estimate anything else, too
= What about P(C| —r)? P(C| —r, —w)?




Rejection Sampling

Likelihood Weighting

Let's say we want P(C)
= No point keeping all samples around
= Just tally counts of C outcomes

Let's say we want P(C| s)

= Same thing: tally C outcomes, but C, =8, I, W
ignore (reject) samples which don’t G
have S=s c s T W

= This is rejection sampling TGS h W

= |tis also consistent (correct in the
limit)

= Problem with rejection sampling:
= If evidence is unlikely, you reject a lot of samples
= You don’t exploit your evidence as you sample
= Consider P(B|a)

= |dea: fix evidence variables and sample the rest

Burglary

= Problem: sample distribution not consistent!
= Solution: weight by probability of evidence given parents

Likelihood Sampling

Likelihood Weighting

C [ps|o) C [PRIO)
i [ T| 80
F| 50 Fl 20
w = 1.0x0.1x0.99 S RPWER)

T T| .99

T F| .90

2] )

F F| .01

= Sampling distribution if z sampled and e fixed evidence

i
Sws(z,e) = [[ P(zi|Parents(Z;)) o

i=1
= Now, samples have weights .@
m

w(z,e) = [[ P(e;|Parents(E;))
i=1

= Together, weighted sampling distribution is consistent
m m

Sws(z,e)w(z.e) = [] P(e;j|Parents(E;)) [| P(e;|Parents(E;))
i=1 =1

= P(z,e)

Likelihood Weighting

Note that likelihood weighting
doesn’t solve all our problems

Rare evidence is taken into account
for downstream variables, but not
upstream ones

A better solution is Markov-chain
Monte Carlo (MCMC), more
advanced

We'll return to sampling for robot
localization and tracking in dynamic
BNs




